Fundamental regions for cyclical groups of linear fractional transformations on two complex variables
نویسندگان
چکیده
منابع مشابه
Fundamental Regions Foe Cyclical Geoups of Lineae Feactional Tean8foemations on Two Complex Vaeiables
If two operators are restricted only by the two equations (\2)i ^ (2iY2> (i2)i =Z (2i)2 ^ey generate the dicyclic group of order 4(ax + /3X + 1)» From the symmetry of the equations it results that the same group is generated by sv s2 when they satisfy the two conditions (s^y^ = (Vi)^2' ( s i \ ) a i + 1 ^i = (V i ) 0 1 ~\ ^ n e ^ s e c o n " tact of the present paper with the one entitled " Fin...
متن کاملContractivity of linear fractional transformations
One possible approach to exact real arithmetic is to use linear fractional transformations (LFT's) to represent real numbers and computations on real numbers. Recursive expressions built from LFT's are only convergent (i.e., denote a well-deened real number) if the involved LFT's are suuciently contractive. In this paper, we deene a notion of contrac-tivity for LFT's. It is used for convergence...
متن کاملDifferential Subordinations for Fractional- Linear Transformations
We establish that the differential subordinations of the forms p(z)+γzp′(z)≺ h(A1,B1;z) or p(z)+γzp′(z)/p(z) ≺ h(A2,B2;z) implies p(z) ≺ h(A,B;z), where γ ≥ 0 and h(A,B;z)= (1+Az)/(1+Bz) with −1≤ B <A.
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولOrphans in Forests of Linear Fractional Transformations
A positive linear fractional transformation (PLFT) is a function of the form f(z) = az+b cz+d where a, b, c and d are nonnegative integers with determinant ad− bc 6= 0. Nathanson generalized the notion of the Calkin-Wilf tree to PLFTs and used it to partition the set of PLFTs into an infinite forest of rooted trees. The roots of these PLFT Calkin-Wilf trees are called orphans. In this paper, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1911
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1911-02068-7